Cơ chế Thực_vật_C4

Cơ chế C4 được M. D. Hatch và C. R. Slack, hai nhà nghiên cứu người Australia, phát hiện năm 1966, vì thế đôi khi nó còn được gọi là cơ chế Hatch-Slack.

thực vật C3, bước đầu tiên trong các phản ứng phụ thuộc ánh sáng của quang hợp là quá trình cố định CO2 bằng enzym RuBisCO thành 3-photphoglyxerat. Tuy nhiên, do hoạt động kép caxboxylaza / oxygenaza của RuBisCO, nên một lượng chất nền bị ôxi hóa thay vì bị cacboxylat hóa, tạo ra sự thất thoát chất nền và làm tiêu hao năng lượng, người ta gọi là quang hô hấp (hay hô hấp sáng). Nhằm tránh hiện tượng quang hô hấp, thực vật C4 đã phát triển một cơ chế nhằm chuyển giao CO2 tới enzym RuBisCO có hiệu quả hơn. Chúng sử dụng kiểu lá đặc biệt của mình, trong đó lạp lục tồn tại không những chỉ ở các tế bào thịt lá thuộc phần bên ngoài của lá (tế bào mô giậu) mà còn ở các tế bào bó màng bao. Thay vì cố định trực tiếp trong chu trình Calvin-Benson, CO2 được chuyển hóa thành axít hữu cơ chứa 4-cacbon và có khả năng tái sinh CO2 trong các lạp lục của các tế bào bó màng bao. Các tế bào bó màng bao sau đó có thể sử dụng CO2 này để sinh ra các cacbohydrat theo kiểu cố định cacbon C3 thông thường.

Bước đầu tiên trong cơ chế này là cố định CO2 bằng enzym photphoenolpyruvat cacboxylaza (PEP cacboxylaza) tồn tại trong các tế bào thịt lá:

PEP cacboxylaza + PEP + CO2 → axit oxaloaxetat

PEP cacboxylaza có động lực học Michaelis-Menten (Km) thấp hơn cho CO2 - và vì thế có ái lực cao hơn RuBisCO. Ngoài ra, O2 là chất nền rất kém cho enzym này. Vì vậy, ở các nồng độ tương đối thấp của CO2, phần lớn CO2 sẽ được cố định theo cơ chế này.

Sản phẩm thông thường được chuyển hóa thành malat, một hợp chất hữu cơ đơn giản, và nó được vận chuyển tới các tế bào bó màng bao, vây quanh gân lá gần đó, tại đây nó được decacboxylat hóa để giải phóng CO2, và điôxít cacbon sẽ tham gia vào chu trình Calvin-Benson. Quá trình decacboxylat hóa giải phóng pyruvat để vận chuyển ngược trở lại thịt lá và bị photphorylat hóa trong phản ứng được pyruvat orthophotphat dikinaza (PPDK) xúc tác, để tái sinh PEP bằng cách mất đi của nhóm phốtpho và một phân tử ATP.

Do mọi phân tử CO2 đều bị cố định hai lần, cơ chế C4 là tiêu tốn năng lượng hơn so với cơ chế C3. Cơ chế C3 đòi hỏi 18 ATP để tổng hợp một phân tử glucoza trong khi cơ chế C4 đòi hỏi 24 ATP. Nhưng do nếu khác đi thì các thực vật nhiệt đới sẽ mất trên một nửa cacbon quang hợp trong quang hô hấp, nên cơ chế C4 là cơ chế thích nghi để giảm thiểu thất thoát.

Có một vài biến thể của cơ chế này:

  1. Axít 4-cacbon được vận chuyển từ các tế bào thịt lá có thể là malat như trên đây, nhưng cũng có thể là aspartat.
  2. Axít 3-cacbon được vận chuyển ngược từ các tế bào bó bao bó mạch về các tế bào thịt lá có thể là pyruvat như trên đây, nhưng cũng có thể là alanin.
  3. Enzym xúc tác quá trình decacboxylat hóa trong các tế bào bó màng bao là khác nhau, tùy theo loài. Ở ngômía, enzym là NADP-malic enzym, ở nó là NAD-malic enzym còn trong cỏ Guinea (Panicum maximum) thì enzym đó là PEP cacboxykinaza.